BAB I PENDAHULUAN

A. Latar Belakang

Penyakit-penyakit degeneratif seperti kanker, jantung dan diabetes melitus salah satu penyebabnya adalah radikal bebas. Senyawa radikal bebas ialah molekul yang mempunyai satu atau lebih elektron tidak berpasangan serta memiliki sifat yang sangat reaktif. Reaktivitasnya yang tinggi mengakibatkan terbentuknya radikal baru dan akan bereaksi lagi dengan molekul lainnya, sehingga terjadi reaksi berantai secara terus menerus yang mengakibatkan kerusakan sel (Fathurrachman, 2014). Beberapa faktor dapat memicu pembentukan radikal bebas berlebih seperti infeksi, merokok, polusi, dan sinar ultraviolet (Fajarwati, 2015). Dampak buruk radikal bebas dapat diatasi oleh pemberian senyawa antioksidan.

Antioksidan dikategorikan menjadi dua bagian, antara lain antioksidan buatan dan antioksidan alami. Antioksidan buatan seperti *Butylate Hydroxy Anisole* (BHA) dan *Butylated Hyroxy Toluene* (BHT) jika dikonsumsi dalam jangka panjang akan menimbulkan efek karsinogenik atau dapat memicu kanker. Oleh karena itu, penggunaan antioksidan beralih ke jenis yang bersumber dari antioksidan alami seperti vitamin A, E, C, karotenoid, serta senyawa fenolik dan flavonoid. Antioksidan alami banyak terkadung dalam tanaman salah satunya dari daun jeruk nipis (*Citrus aurantifolia*) (Aulia, 2023).

Daun jeruk nipis adalah tanaman yang banyak digunakan untuk bahan obat tradisional karena kemudahannya dalam memperoleh simplisia tersebut. Daun jeruk nipis bisa didapatkan kapan saja tanpa menunggu waktu panen. Daun jeruk nipis mengandung senyawa flavonoid total sebesar 38,36±1,47 mg QE/g dan memiliki kadar fenolik total sebesar 106,05±2,73 mg GAE/g (Khettal *et al.*,2017). Senyawa flavonoid yang bertindak sebagai antioksidan pada daun jeruk nipis adalah kuersetin, dibuktikan dengan penelitian yang sudah dilakukan oleh Yanuarty,(2021), bahwa ekstak etanol daun jeruk nipis menghasilkan nilai IC₅₀ sebesar 98,58 ppm dan penelitian Khettal *et al.*,(2017) sebesar 65,42 ppm, kedua penelitian tersebut masuk dalam kategori kuat. Penelitian oleh Indriyani *et al.*,

(2023) daun jeruk nipis menghasilkan nilai IC₅₀ sebesar 83,89 ppm kategori kuat dibandingkan kulit dan buahnya yaitu sebesar 547,6 ppm dan 1793,06 ppm, kedua bagian tersebut termasuk kategori sangat lemah, sehingga pada penelitian ini memilih menggunakan daun jeruk nipis karena nilai IC₅₀ yang diperoleh termasuk kedalam kategori kuat.

Aktivitas antioksidan daun jeruk nipis berasal dari senyawa flavonoid yang terkandung didalamnya. Senyawa tersebut dapat diperoleh melalui metode ekstraksi yaitu *Ultrasound Assisted Extraction* (UAE) yang cocok digunakan pada senyawa yang tidak tahan panas seperti flavonoid dan cepat rusak pada suhu yang tinggi. Senyawa flavonoid dapat terdegradasi pada suhu pemanasan lebih dari 85°C (Gultom, 2020).

Senyawa dalam suatu ekstrak dapat dipisahkan dengan metode fraksinasi menggunakan pelarut yang sesuai berdasarkan kepolarannya dengan metode corong pisah, yaitu pemisahan berdasarkan berat jenisnya. Penelitian yang sudah dilakukan Norhaslinda *et al.*,(2023) pada ekstrak daun pakis sawit menghasilkan nilai IC₅₀ yang berbeda antara ekstrak dan fraksi etil asetat secara berurutan adalah 1,406 ppm dan 103 ppm. Berdasarkan penelitian tersebut menunjukan bahwa terdapat perbedaan nilai IC₅₀ antara ekstrak dan fraksi. Oleh sebab itu, penelitian ini berutujuan untuk melakukan uji aktivitas peredaman radikal bebas DPPH pada ekstrak etanol 96% dan fraksi etil asetat daun jeruk nipis.

B. Rumusan Masalah

Bagaimana perbandingan nilai IC₅₀ ekstrak etanol dan fraksi etil asetat daun jeruk nipis terhadap aktivitas peredaman radikal bebas DPPH?

C. Tujuan Penelitian

1. Tujuan Umum

Untuk mengetahui aktivitas peredaman radikal bebas DPPH daun jeruk nipis.

2. Tujuan Khusus

Mengetahui perbandingan nilai IC₅₀ ekstrak etanol dan fraksi etil asetat daun jeruk nipis.

D. Manfaat Penelitian

1. Manfaat Teoritis

Memberikan data yang dapat bermanfaat sebagai pengetahuan serta menjadi dasar pertimbangan untuk penelitian selanjutnya mengenai aktivitas peredaman radikal bebas DPPH yang berada dalam ekstrak etanol dan fraksi etil asetat daun jeruk nipis.

2. Manfaat Praktis

Memberikan informasi lebih lanjut kepada masyarakat terkait khasiat ekstrak etanol dan etil asetat daun jeruk nipis yang bisa digunakan sebagai antioksidan serta sebagai dasar pengembangan sediaan herbal atau suplemen antioksidan daun jeruk nipis bagi industri farmasi.

E. Keaslian Penelitian

Berdasarkan kajian pustaka yang sudah dilaksanakan, riset terkait perbandingan aktivitas peredeman radikal bebas DPPH ekstrak etanol 96% dan fraksi etil asetat daun jeruk nipis belum pernah dilakukan, maka penelitian ini memiliki keaslian dan keterbaruan dibandingkan penelitian terdahulu terkait jeruk nipis. Adapun beberapa jurnal penelitian terkait judul penelitian skripsi dapat dilihat pada Tabel 1.

Tabel 1. Keaslian Penelitian

No	Judul	Hasil	Perbedaan	Persamaan
1.	Uji Aktivitas	Ekstrak etanol daun 1.	Metode ekstrasi 1.	Sampel yang
	Antioksidan	jeruk nipis memiliki	menggunakan	digunakan
	Daun Jeruk	kandungan total	metode	yaitu daun
	Nipis (Citrus	fenolik sebesar	maserasi.	jeruk nipis.
	aurantifolia)	0,687% mg QE/g	2.	Pelarut yang
	secara	dan ekstrak etanol		digunakan
	Spektrofotometri	daun jeruk nipis		etanol 96%.
	UV-Vis	memiliki aktivitas		
	(Yanuarty,	antioksidan kuat		
	2021).	dengan nilai IC ₅₀		
		98,58μg/mL.		
2.	Uji Aktivitas	Formulasi terbaik 1.	Metode 1.	Sampel yang
	Antioksidan dan	pada formulasi II	esktraksi yang	digunakan
	Formulasi Gel	dengan nilai IC ₅₀	digunakan yaitu	yaitu daun
	Ekstrak Etanol	60,84 ppm.	maserasi.	jeruk nipis.
	Daun Jeruk	2.	Uji aktivitas 2.	Pelarut yang
	Nipis (Citrus		antioksidan dan	digunakan
	aurantifolia)		formulasi gel	etanol 96%.

No	Judul	Hasil	Perbedaan	Persamaan
	(Andika,		dari ekstrak	
	Rahmawati, &		etanol daun	
	Kuncoro, 2021).		jeruk nipis.	
3.	Uji Aktivitas	Didapatkan	1. Menguji aktivitas	1. Sampel yang
	Antioksidan	perubahan warna	antioksidan	digunakan
	Pada Ekstrak	secara kualitatif	ekstrak daun	yaitu daun
	Daun Jeruk	baik pada esktrak	jeruk nipis.	jeruk nipis.
	Nipis (Citrus	daun jeruk nipis dan		2. Pelarut yang
	aurantifolia)	vitamin C. Nilai	menggunakan	digunakan
	Dengan	IC ₅₀ ekstrak daun	metode maserasi.	pada ekstraksi
	Menggunkan	jeruk nipis senilai	motodo masorasi.	yaitu
	Metode DPPH (93,41 ppm dan		menggunakan
	1,1-Diphenyl-2-	termasuk aktivitas		etanol 96%.
	Picrylhydrazyl)	antioksidan kuat.		3. Pengujian
		antioksidan kuat.		
	(Fajarwati,			pada aktivitas antioksidan
	2015).		1 10	
				mengguanakan
4.	Pengaruh	Rendemen ekstrak	1. Metode	DPPH.
4.	Pengarun Perbedaan		ekstraksi	1. Sampel yang
	Metode	daun jeruk nipis dengan metode		digunakan, yaitu daun
	Ekstraksi	soxhletasi diperoleh	menggunakan dua metode yaitu	•
	Soxhletasi dan	nilai 21,3400 ±		jeruk nipis. 2. Pelarut ekstrak
	Sonikasi dan	0,47885% dan		
	Terhadap		2. Pengujian yang	yang digunakan,
	Aktivitas	diperoleh nilai	dilakukan	•
	Antioksidan	sebesar 19,4967 ±	membandingkan	yaitu etanol 96%.
	Ekstrak Etanol	0,86731%. Nilai	dua metode	JU/0.
	Daun Jeruk		ekstraksi	
	Nipis (Citrus	$21,8333 \pm 3,05474$	terhadap	
	aurantifolia)	$\mu g/mL$, ekstrak	aktivitas	
	(Aulia, 2023).	etanol daun jeruk	antioksidan daun	
	(Hulla, 2023).	nipis dengan	jeruk nipis.	
		metode soxhletasi	jeruk inpis.	
		yaitu soxiiietasi		
		81,3067 ± 8,21259		
		μ g/mL dan ekstrak		
		etanol daun jeruk		
		nipis dengan		
		metode		
		sonikasi yaitu		
		$78,7600 \pm 3,71617$		
		μ g/mL. Nilai IC ₅₀		
		kuersetin termasuk		
		dalam kategori		
		sangat kuat		
		sedangkan ekstrak		
		etanol daun jeruk		

nipis termasuk dalam kategori kuat. 6. Bioactive Setiap bagian 1. Menguji seluruh 1. Simplisia yar Components and tanaman jeruk nipis bagian tanaman digunakan Their Activities mempunyai jeruk nipis. yaitu tanama from Different komposisi metabolit 2. Pelarut yang jeruk nipis.
kuat. 6. Bioactive Setiap bagian 1. Menguji seluruh 1. Simplisia yar Components and tanaman jeruk nipis bagian tanaman digunakan Their Activities mempunyai jeruk nipis. yaitu tanama from Different komposisi metabolit 2. Pelarut yang jeruk nipis.
6. Bioactive Setiap bagian 1. Menguji seluruh 1. Simplisia yar Components and tanaman jeruk nipis bagian tanaman digunakan Their Activities mempunyai jeruk nipis. yaitu tanama from Different komposisi metabolit 2. Pelarut yang jeruk nipis.
Components and tanaman jeruk nipis bagian tanaman digunakan Their Activities mempunyai jeruk nipis. yaitu tanama from Different komposisi metabolit 2. Pelarut yang jeruk nipis.
Parts sekunder yang digunakan yaitu of Citrus berbeda-beda, etanol 70% dan aurantifolia dimana pada bagian etanol 96%. (Christm.) buah menunjukan 3. Aktivitas Swingle for Food nilai IC ₅₀ 1793,06 antioksidan Development (ppm, pada bagian menggunakan Indriyani et al, daun menunjukan 2023). nilai IC ₅₀ sebesar 83,89 ppm dan pada bagian kulit menunjukan nilai IC ₅₀ sebesar 457,6