
BAB 4 HASIL DAN PEMBAHASAN

4.1 Pengumpulan Data

4.1.1 Proses Produksi Kaos

Berikut merupakan alur proses produksi CV Rumah Kreasi Yogyakarta.

Gambar 4.0.1 Alur Proses Produksi

Alur proses produksi kaos CV Rumah kreasi Yogyakarta sebagai berikut:

1. Pemotongan kain

Proses pertama yaitu pengukuran dan juga pemotongan bahan kain mengikuti pola yang sudah dibuat.

2. Desain Sablon

Proses selanjutnya yaitu mendesain sesuai dengan keinginan konsumen. Desain juga bisa dibuat oleh konsumen yang selanjutnya akan diteruskan ke bagian desain untuk ditinjau apakah sudah bisa diteruskan desain tersebut ke bagian sabon.

3. Proses Sablon

Proses sablon dilakukan menggunakan alat mesin *Screen Canvas* secara manual sesuai dengan desain yang sudah ditentukan.

4. Proses Penjahitan

Proses penjahitan dilakukan dengan menggunakan mesin jahit, diantaranya proses *overdeck*, obras dan *single stitch* tergantung kebutuhan dan desain kaos tersebut.

5. Proses Inspeksi

Proses ini dilakukan untuk pengecekan hasil produksi secara manual seperti menyortit, pengecekan kerapihan hasil jahit, pengecekan kain dan pembersihan kain dan setrika baju menggunakan alat setrika uap .

6. Proses Packing

Proses *packing* ini dilakukan oleh pekerja yang sama pada proses inspeksi sebelum ini. *Packing* dilakukan menggunakan plastik bening untuk mengemas hasil produksi kaos.

4.1.2 Data Mesin Produksi

Mesin yang digunakan dalam proses produksi meliputi mesin seperti pada Tabel 4.1.

Tabel 4.1 Daftar Mesin Produksi

Nama mesin	Jumlah
Printer	1
Wacom Tablet	1
Mesin potong	1
Mesin Press	1
Mesin Curing	1
Heat Gun	4
Mesin Jahit	4
Setrika Uap	1

4.1.3 Data Jumlah Pekerja

Jumlah pekerja pada CV Rumah Kreasi Yogyakarta sebanyak 14 orang, yang bekerja di bagian produksi maupun administrasi.

Tabel 4.2 Jumlah Pekerja

Bagian	Jumlah Pekerja
Administrasi	2
Manajer	1
Potong Kain	1
Sablon	4
Desain	1
Runner	1
Penjahit	3
QC dan Packing	1

4.1.4 Data Waktu Proses Produksi

Pengukuran waktu proses produksi dilakukan dengan mengukur waktu pengerjaan setiap proses atau bagian menggunakan alat *stopwatch*. Setiap pengukuran waktu dilakukan sebanyak 10 kali pengamatan.

1. Aktivitas Proses Produksi

Berikut aktivitas proses produksi kaos CV Rumah Kreasi Yogykarta.

Tabel 4.3 Aktivitas Proses Produksi

No	Bagian	Aktivitas	Kode
		Pengukuran	A1
1	Potong kain	Pembuatan pola	A2
		Pemotongan kain	A3
2	Desain	Membuat desain	B1
	Desam	Mencetak desain	B2
		Proses sablon	C1
3	Sablon	Proses pengeringan menggunakan heat gun	C2
		Proses <i>press</i> sablon menggunakan mesin <i>curing</i>	C3
4	Runner	Memindahkan hasil sablon ke bagian jahit	D1
4	Kunner	Memindahkan hasil jahit ke bagian packing	D2
5	Jahit	Menjahit	E1
		Memeriksa sablon	F1
	Q Y.	Memeriksa hasil jahitan	F2
6	QC dan Packing	Setrika uap kaos	F3
	1 AS	Pengemasan menggunaka plastik bening	F4

2. Waktu Proses Produksi

Tabel 4.4 Waktu Proses Produksi Kaos

A1 94 A2 83 A3 13	e-1 945 330 341	Ke-2 1050 854	Ke-3 958	Ke-4	Ke-5	Ke-6	** =		** .		(D. (11)
A2 83 A3 13	330		958			Ke-0	Ke-7	Ke-8	Ke-9	Ke-10	(Detik)
A3 13		854		970	1011	923	941	1064	1043	1020	992,5
	341		876	815	902	883	850	794	855	879	853,8
		1173	125 6	1119	1221	1342	1185	1246	1197	1254	1233,4
B1 25	543	2732	245 6	2524	2345	2276	2154	2233	2421	2167	2385,1
B2 28	287	290	301	321	305	296	278	311	314	289	299,2
C1 1	14	13	14	13	13	14	14	13	_14	14	13,6
C2 5	5	6	5	5	6	5	5	5	5	5	5,2
C3 1	11	12	11	13	11	12	10	11	12	11	11,4
D1 48	85	450	478	492	432	442	501	495	429	476	468
D2 47	78	421	467	496	453	432	486	490	503	479	470,5
E1 94	43	922	954	934	953	940	921	1012	924	945	944,8
F1 2	20	21	19	22	24	25	22	21	23	22	21,9
F2 2	23	24	25	25	25	24	25	25	23	24	24,3
F3 4	45	47	49	43	46	50	51	48	46	45	47
F4 1	14	15	13	12	14	14	12	14	13	15	13,6

4.1.5 Uji Kecukupan Data

Uji kecukupan data dihitung menggunakan rumus:

$$N' = \left[\frac{\frac{k}{s} \sqrt{N \sum x^2 - (\sum x)^2}}{\sum x} \right]^2 \tag{4.1}$$

Dimana:

X : Data pengamatan yang diambil

N': Jumlah data teoritis atau data yang harus diambil

N : Jumlah data pengamatan

Dengan:

N : 10

K : 2 (dengan tingkat kepercayaan 95%, berarti pengukur percaya pengukuran yang diambil akan memberikan interval yang mencakup nilai waktu yang sebenarnya dengan persentase 95%)

S : 100%-95% = 5% = 0.05

Tabel 4.5 Uji kecukupan Data Waktu Proses Produksi

No	Aktivitas	Kode	ΣΧ	$\sum X^2$	N'	Keterangan
1	Pengukuran	A1	9925	9874065	3,81745	Cukup
2	Pembuatan pola	A2	8538	7299712	2,18775	Cukup
3	Pemotongan kain	A3	12334	15257778	4,73523	Cukup
4	Membuat desain	B1	23851	57195521	8,67687	Cukup
5	Mencetak desain	B2	2992	896874	2,9805	Cukup
6	Proses sablon	C1	136	1852	2,07612	Cukup
7	Pengeringan menggunakan heat gun	C2	52	272	9,46746	Cukup
8	Press sablon menggunakan mesing <i>curing</i>	C3	114	1306	7,87935	Cukup
9	Memindahkan hasil sablon ke bagian jahit	D1	4680	2196904	4,86814	Cukup
10	Memindahkan hasil jahit ke bagian packing	D2	4705	2220409	4,84726	Cukup
11	Menjahit	E1	9448	8932800	1,13453	Cukup
12	Memeriksa sablon	F1	219	4825	9,64117	Cukup
13	Merapikan sisa benang jahitan	F2	243	5911	1,65286	Cukup
14	Setrika uap kaos	F3	470	22146	4,05613	Cukup
15	Pengemasan menggunakan plastik bening	F4	136	1860	8,99654	Cukup

4.1.6 Uji Keseragaman Data

Uji keseragaman data dilakukan menggunakan data hasil pengamatan langsung. Data yang didapatkan dari hasil pengamatan selanjutnya di lakukan uji apakah data tersebut berada pada batas kontrol atau tidak. Rumus uji keseragaman data adalah sebagai berikut:

- Batas Kontrol Atas
$$= \bar{x} + k.\sigma$$
 (4.2)

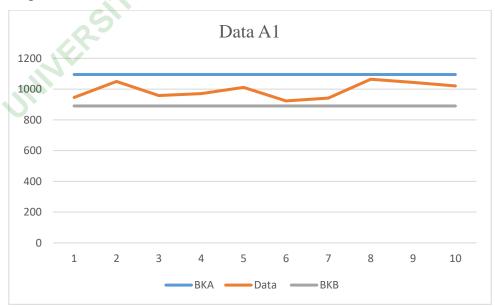
- Batas Kontrol Bawah =
$$\bar{x} - k.\sigma$$
 (4.3)

Dimana:

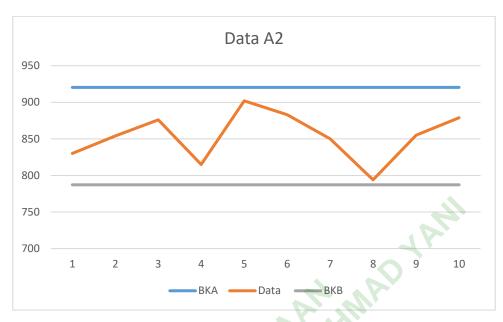
$$- \quad \bar{x} = \frac{\sum x}{N} \tag{4.4}$$

$$- \quad \sigma = \sqrt{\frac{\sum (x - \bar{x})}{N - 1}} \tag{4.5}$$

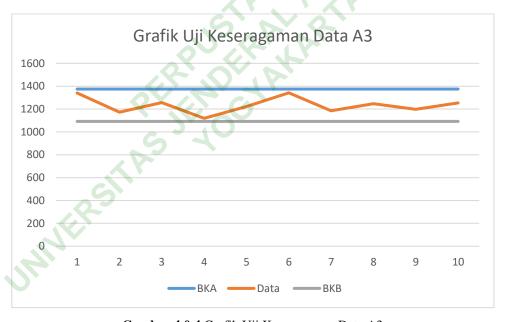
Keterangan:


x = Data pengamatan yang diambil

 \bar{x} = Nilai rata-rata


N = Jumlah data pengamatan

 σ = Standar Deviasi


Berikut uji keseragaman data dengan kode A1, A2 dan A3 yang disajikan dalam bentuk grafik. Data dengan kode B1 hingga F4 terlampir pada halaman lampiran.

Gambar 4.0.2 Grafik Uji Keseragaman Data A1

Gambar 4.0.3 Grafik Uji Keseragaman Data A2

Gambar 4.0.4 Grafik Uji Keseragaman Data A3

Berdasarkan gambar yang ditampilkan di atas, data pengamatan dengan kode A1, A2 dan A3 masih berada pada batas kontrol atas dan batas kontrol bawah yang berarti data tersebut bersifat seragam.

Berikut merupakan tabel rekapitulasi hasil uji keseragaman data waktu proses produksi kaos CV Rumah Kreasi Yogyakarta.

Tabel 4.6 Rekapitulasi Uji Keseragaman Data Waktu Proses

No	Aktivitas	Kode	Rata-rata (Detik)	σ	ВКВ	BKA	Keterangan
1	Pengukuran	A1	992,5	51,101	890,2	1094, 702	Seragam
2	Pembuatan pola	A2	853,8	33,279	787,2	920,3 58	Seragam
3	Pemotongan kain	A3	1233,4	70,728	1091,9	1374, 856	Seragam
4	Membuat desain	B1	2385,1	185,14 2	2014,8	2755, 384	Seragam
5	Mencetak desain	B2	299,2	13,612	271,9	326,4 24	Seragam
6	Proses sablon	C1	13,6	0,5163	12,5	14,63 26	Seragam
7	Proses pengeringan menggunakan heat gun	C2	5,2	0,421	4,3	6,042	Seragam
8	Proses press sablon menggunakan mesing curing	СЗ	11,4	0,843	9,7	19,4	Seragam
9	Memindahkan hasil sablon ke bagian jahit	D1	468	27,211	413,5	13,08 6	Seragam
10	Memindahkan hasil jahit ke bagian packing	D2	470,5	27,297	415,9	831,8	Seragam
11	Menjahit	E1	944,8	26,519	891,7	522,4 22	Seragam
12	Memeriksa sablon	F1	21,9	1,791	18,3	36,6	Seragam
13	Merapikan sisa benang jahitan	F2	24,3	0,823	22,6	525,0 94	Seragam
14	Setrika uap kaos	F3	47	2,494	42,0	84	Seragam
15	Pengemasan menggunakan plastik bening	F4	13,6	1,074	11,4	997,8 38	Seragam

4.2 Pemetaan Current State Value Stream Mapping

Current State Value Stream Mapping digunakan untuk menggambarkan kondisi eksisting CV Rumah Kreasi Yogyakarta. Berikut merupakan tahapan dalam pembuatan current state value stream mapping.

1. Identifikasi aktivitas NVA, VA dan NNVA

Aktivitas yang bersifat *value added* yaitu proses produksi yang memberikan nilai tambah kepada produk. Aktivitas yang bersifat *necessary but non value added* yaitu proses produksi yang tidak memberikan nilai tambah tetapi masih

diperlukan. Aktivitas *non value added* yaitu proses produksi yang tidak memberikan nilai tambah produk.

Tabel 4.7 Klasifikasi Aktivitas VA, NVA dan NNVA

no	Bagian	Aktivitas	Kode	Klas	sifikasi <i>I</i>	Aktivitas
1		Pengukuran	A1			NNVA
2	Potong kain	Pembuatan pola	A2			NNVA
3		Pemotongan kain	A3	VA		
4	Desain	Membuat desain	B1	VA		
5	Besum	Mencetak desain	B2	VA		
6		Proses sablon	C1	VA		
7		Proses pengeringan menggunakan	C2		P	NNVA
8	Sablon	heat gun				1111111
9		Proses press sablon menggunakan	C3			NNVA
10		mesing curing	C3			1111171
11		Memindahkan hasil sablon ke bagian jahit	D1		NVA	
12	Runner	·				
13		Memindahkan hasil jahit ke bagian packing	D2		NVA	
15	Jahit	Menjahit	E1	VA		
16		Memeriksa sablon	F1			NNVA
17		Memeriksa hasil jahitan	F2			NNVA
18	QC dan Packing	Setrika uap kaos	F3	VA		
19 20		Pengemasan menggunakan plastik bening	F4	VA		

2. Menghitung Availability Time

Availability time merupakan waktu aktual yang tersedia selama satu hari kerja, yaitu 8 jam. Availability time didapatkan menggunakan rumus:

Availability time =
$$(8 \text{ jam} \times 60 \text{ menit} \times 60 \text{ detik})$$
 = 28.800

3. Menghitung Waktu Siklus

Tabel 4.8 Waktu Siklus Proses Produksi

No	Bagian	Aktivitas	Kode	Waktu (Detik)	Total Waktu (Detik)			
		Pengukuran	A1	992,5				
1	Potong kain	Pembuatan pola	A2	853,8	3079,7			
	Rum	Pemotongan kain	A3	1233,4				
2	Desain	Membuat desain	Membuat desain B1 2385,1					
2	Desain	Mencetak desain	B2	299,2	2684,3			
		Proses sablon	C1	13,6				
3	Sablon	Proses pengeringan menggunakan <i>heat gun</i>	C2	5,2	30,2			
3	Sacion	Proses <i>press</i> sablon menggunakan mesing <i>curing</i>	C3	11,4	30,2			
4	Runner	Memindahkan hasil sablon ke bagian jahit	D1	468	938,5			
	ERS	Memindahkan hasil jahit ke bagian packing	D2	470,5	750,0			
5	Jahit	Menjahit	E1	944,8	944,8			
		Memeriksa sablon	F1	21,9				
		Memeriksa hasil jahitan	F2	24,3				
		Setrika uap kaos	F3	47				
6	QC dan Packing	Pengemasan menggunaka plastik bening	F4	13,6	106,8			

Percentage Paradigm Percentag

4. Currennt State Value Stream Map

Gambar 4.5 Current State Value Stream Map

Pada gambar 4.5 merupakan visualiasi keadaan saat ini pada proses produksi kaos CV Rumah Kreasi Yogyakarta. Dalam gambar tersebut dapat diketahui informasi waktu tiap proses yang dikategorikan berdasarkan sifat nya menjadi *value added non-value added* dan *necessary but non value added*.

Dari gambar 4.5 dapat diketahui jumlah *availability time* yatu 28.800 detik dengan waktu siklus 6845,8 detik setiap sekali putaran waktu produksi. *Current state value stream mapping* memberikan informasi aliran proses produksi dan menggambarkan beberapa *waste* yang terjadi. Berikut penjelasan *waste* yang terjadi pada proses produksi CV Rumah Kreasi Yogyakarta.

- a. Proses pemotongan kain CV Rumah Kreasi Yogyakarta menggunakan kain *cotton combed*. Pada proses ini operator yang bekerja sejumlah 1 orang menggunakan alat potong yang masih manual dioperasikan oleh operator. Waktu siklus pada proses ini 2087,2 detik.
- b. Proses desain dilakukan oleh 1 operator menggunakan komputer dan juga alat cetak desain dengan waktu siklus 2684,3 detik.

- c. Pada proses sablon dilakukan oleh 4 orang operator secara bergantian tiap shift dengan jumlah 2 operator per shift. Proses ini masih manual menggunakan alat screen sablon sedangkan pada proses press sablon dibantu menggunakan mesin press. Waktu siklus pada proses ini 30,2 detik.
- d. *Runner* merupakan bagian yang memindahkan hasil sablon ke bagian jahit dan sebaliknya yang dilakukan oleh 1 orang pekerja. Pada bagian *runner* ini menjadi salah satu *waste transportation* pada proses produksi, dikarenakan adanya pemisahan tempat bagian jahit yang tidak menjadi satu dengan bagian produksi sehingga memiliki jarak yang jauh dengan waktu siklus 938,5 detik.
- e. Proses jahit dilakukan dengan 3 operator menggunakan mesin jahit dengan waktu siklus 944,8 detik.
- f. Proses *QC* dan *Packing* ini dilakukan oleh 1 orang pekerja dengan waktu siklus 93,2 detik.

4.3 Identifikasi Waste

Identifikasi *waste* pada proses produksi CV Rumah Kreasi Yogyakarta ini menggunakan kuesioner *borda* dalam menentukan frekuensi *waste* tertinggi yang disebar ke beberapa responden yaitu pekerja pada bagian produksi CV Rumah Kreasi Yogykarta. Dalam mengidentifikasi frekuensi *waste* tertinggi dilakukan pengamatan kepada pekerja pada bagian produksi menggunkana kuesioner *borda* dengan skala 1 hingga 7. Skala 1 merupakan tertinggi dan 7 merupakan terendah.

Berikut perhitungan ranking bobot kuesioner borda.

Tabel 4.9 Hasil kuesioner Borda

Jenis Waste	Peringkat									
Jems wasie	1	2	3	4	5	6	7			
Overproduction	2	2	1	1	3	2	1			
Delay		3	3	4	3	1				
Transportation	5	3	4							
Process		2	2	5	2		1			
Inventories		1	2	5	1	3				
Motion	1	4		4	3					
Defects		4	1	3	4	2	1			

1. Penentuan Bobot

Setelah didapatkan hasil kuesioner *borda*, selanjutnya dilakukan penentuan pembobotan tertinggi dengan diberi nilai m yang merupakan jumlah total skala lalu dikurangi 1 dan seterusnya hingga skala terakhir diberi bobot 0.

Tabel 4.10 Hasil Penentuan Bobot

Jenis Waste	Peringkat								
Julis waste	1	2	3	4	5	6	7		
Overproduction	2	2	1	1	3	2	1		
Delay		3	3	4	3	1			
Transportation	5	3	4						
Process		2	2	5	2		1		
Inventories		1	2	5	1	3			
Motion	1	4		4	3				
Defects		4	1	3	1	2	1		
Bobot	6	5	4	3	2	1	0		

2. Perhitungan Ranking

Langkah sealanjutnya yaitu perhitungan *ranking* di setiap jenis *waste* dengan mengalikan angka pada kolom peringkat dengan bobot dan ditambahkan dengan hasil perkalian di setiap jenis *waste* yang sama. Berikut contoh perhitungan untuk jenis *waste overproduction*.

Ranking =
$$(2x6)+(2x5)+(1x4)+(1x3)+(3x2)+(2x1)+(1x0)$$
 (4.7)
= 44

Tabel 4.11 Hasil Perhitungan Ranking

Jenis Waste				Ranking				
Jems waste	1	2	3	4	5	6	7	Kanking
Overproduction	2	2	1	1	3	2	1	44
Delay		3	3	4	3	1		46
Transportation	5	3	4					59
process		2	2	5	2		1	37
inventories		1	2	5	1	3		33
motion	1	4		4	3			44
defects		4	1	3	1	2	1	37
Bobot	6	5	4	3	2	1	0	300

3. Menghitung Bobot

Selanjutnya yaitu perhitungan bobot dengan menghitung total nilai *ranking*. Hasil total nilai ranking yaitu 305. Perhitungan bobot dilakukan dengan pembagian nilai *ranking* pada setiap *waste* dengan total nilai *ranking* yang didapat. Contoh pada jenis *waste overproduction* dengan nilai *ranking* 44 dibagi dengan total nilai *ranking* 305. Dan diketahui hasil dari perhitungan bobot tersebut yaitu 0,144262295.

Tabel 4.12 Hasil perhitungan Bobot

Jenis Waste	7	9	Pe	eringk	at		Dankina	Bobot	
Jems waste	1	2	3	4	5	6	7	Ranking	Βουοι
Overproduction	2	2	1	1	3	2	1	44	0,146666667
Delay		3	3	4	3	1		46	0,153333333
Transportation	5	3	4					59	0,196666667
process		2	2	5	2		1	37	0,123333333
inventories		1	2	5	1	3		33	0,11
motion	1	4		4	3			44	0,146666667
defects		4	1	3	1	2	1	37	0,123333333
Bobot	6	5	4	3	2	1	0	300	

Berdasarkan tabel 4.11 diketahui bahwa *waste* dengan frekuensi tertinggi yaitu *transportation* dan *delay* dengan masin-masing bobot sebesar 0,196 dan 0,153.

4.4 Pemilihan Value Stream Analysis Tools (VALSAT)

Valsat merupakan pendekatan untuk menghitung bobot waste, dengan penentuan bobot dalam menentukan alat menggunakan matriks.

Tabel 4.13 Tabel pembobotan Valsat

	Mapping Tools										
Jenis Waste	Process Activity Mapping	Supply Chain Response Matrix	production Variety Funnel	Quality Filter Mapping	Demand Amplification Mapping	Decision Point Analysis	Physical Structure				
Overproduction	1	3		1	3	3					
Delay	3	9	1		3	3					
Transportation	9				0,		1				
process	9		3	1		1					
inventories	3	9	3	2.1	3	3	1				
motion	9	1	10								
defects	1			9							

Dalam pemilihan *mapping tools* dari *valsat* digunakan hasil pembobotan dari kuesioner *borda* yang akan dimasukkan ke dalam tabel pembobotan *valsat* dan dipilih dengan hasil skor tertinggi.

Tabel 4.14 Hasil Perhitungan Valsat

		Mapping Tools							
Jenis Waste	Bobot	Process Activity Mapping	Supply Chain Response Matrix	productio n Variety Funnel	Quality Filter Mapping	Demand Amplifica tion Mapping	Decision Point Analysis	Physical Structure	
Overprodu	0,1442	0,1442	0,4327		0,1442	0,4327	0,4327		
ction	623	623	869		623	869	869		
Dalay	0,1278	0,3836	1,1508	0,1278		0,3836	0,3836		
Delay	689	066	197	689		066	066		
Transporta	0,1934	1,7409						0,1934	
tion	426	836						426	
***************************************	0,1213	1,0918		0,3639	0,1213		0,1213		
process	115	033		344	115		115		
inventories	0,1475	0,4426	1,3278	0,4426		0,4426	0,4426	0,1475	
inventories	41	23	689	23		23	23	41	
oti on	0,1442	1,2983	0,1442						
motion	623	607	623						
J. of costs	0,1213	0,1213			1,0918				
defects	115	115			033				
Total		5,2229	3,0557	0,9344	1,3573	1,2590	1,3803	0,3409	
		508	377	262	77	164	279	836	
Ranking		1	2	6	4	5	3	7	

Berdasarkan tabel 4.11 terlihat bahwa *rank* tertinggi untuk *mapping tools* yaitu *process activity mapping* dengan skor 5,2229508. Berdasarkan hasil perhitungan *valsat* tersebut maka *mapping tools* yang digunakan yaitu *process activity mapping*. *PAM* ini digunakan untuk mengeliminasi *waste* yang ada pada proses produksi kaos CV Rumah Kreasi Yogyakarta.

4.5 Identifikasi Detailed Mapping Tools

Detailed mapping tools yang digunakan yaitu process activity mapping berdasarkan perhitungan valsat dengan rank tertinggi dengan skor 5,2229508. Berikut merupakan hasil *PAM*.

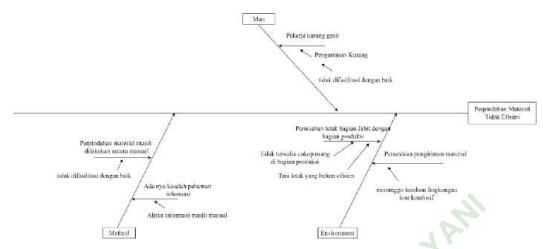
Tabel 4.15 Process Activity Mapping

No	Aktivitas	Mesin/Alat	Waktu Aktivitas						Votorongon	
NO	Aktivitas	Mesiii/Aiat	(Detik)	О	T I S D		D	Keterangan		
1	Pengukuran	Manual	992,5	0					NNVA	
2	Pembuatan pola	Manual	853,8	O					NNVA	
3	Pemotongan kain	Alat potong	1233,4	O					VA	
4	Membuat desain	Wacom Tablet	2385,1	О					VA	
5	Mencetak desain	Printer	299,2					D	VA	
6	Proses sablon	Screen Canvas	13,6	О					VA	
7	Pengeringan menggunakan <i>heat gun</i>	Heat Gun	5,2						NNVA	
8	Press sablon menggunakan mesing curing	Mesin press/ Curing	11,4	О					NNVA	
9	Memindahkan hasil sablon ke bagian jahit	Manual	468		Т				NVA	
10	Memindahkan hasil jahit ke bagian packing	Manual	470,5		Т				NVA	
11	Menjahit	Mesin Jahit	944,8	О					VA	
12	Memeriksa sablon	Manual	21,9			I			NNVA	
13	Merapihkan sisa benang jahitan	Manual	24,3			Ι			NNVA	
14	Setrika uap kaos	Setrika Uap	47	О					VA	
15	Pengemasan menggunakan plastik bening	Manual	13,6	О					VA	

Berdasarkan tabel 4.13 dapat dikeatahui informasi mengenai waktu dan mesin/alat yang diperlukan setiap aktivitas pada proses produksi. Diketahui juga

pada tabel tersebut adanya penggolongan aktivitas menjadi 5 bagian yaitu operation, transportation, inspection, delay dan penyimpanan.

Dalam memudahkan analisis hasil dari *process activity mapping* dibuat rekapitulasi hasil perhitungan. Berikut tabel rekapitulasi perhitungan hasil *process activity mapping*.


Aktivitas	Jumlah	Total Waktu (Detik)	Persentase (%)		
Operation	10	6500,4	83,5		
Transportation	2	938,5	12,1		
Inspection	2	46,2	0,6		
Storage	0	0	0,0		
Delay	1	299,2	3,8		
Total		7784,3	100		
VA	7	4936,7	63		
NVA	2	938,5	12		
NNVA	6	1909,1	25		
Total		7784,3	100		
Cycle Time (Detik) (6845,8			
Lead Time (Detik)		778	34,3		

Tabel 4.16 Hasil Rekapitulasi Process Activity Mapping

Dapat diketahui dari tabel 4.15 aktivitas yang bersifat value added, necessary but non value added dan non value added. Cycle time pada proses produksi CV Rumah Kreasi Yogyakarta memiliki waktu sebesar 6845,8 detik sedangkan lead time produksi sebesar 7784,3 detik dengan rincian 7 aktivitas value added, 2 aktivitas non value added dan 6 aktivitas necessary but non value added. Process cycle efficiency diketahui yaitu 72 % yang didapat dari total waktu value added dibagi dengan cycle time dan dikalikan 100.

4.6 Analisis Akar Penyebab Waste

Fishbone diagram digunakan untuk menganalisis akar penyebab terjadinya waste pada proses produksi CV Rumah Kreasi Yogyakarta. Terdapat 2 jenis waste tertinggi yang telah didapatkan melalui kuesioner borda yaitu transportation dan delay.

Gambar 4.6 Fishbone Diagram Transportation

Pada gambar 4.6 merupakan diagram *fishbone* kategori *waste transportation*. Gambar tersebut menunjukkan akar penyebab terjadi nya *waste* perpindahan material tidak efisien diantaranya *man*, *material*, *method* dan *environment*. Berikut penjelasan akar penyebab dari tiap elemen:

1. Man

a. Pekerja kurang gesit.

Hal ini bisa terjadi dikarenakan tidak diberikan fasilitas yang memadai yang berakibat pekerja melakukan perpindahan secara manual dan tidak efisien waktu.

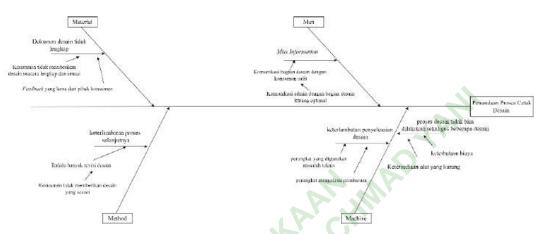
2. Method

a. Perpindahan material masih dilakukan secara manual.

Hal ini bisa terjadi dikarenakan tidak ada fasilitas yang memadai seperti alat untuk membawa material.

b. Kesalah pahaman informasi.

Hal ini bisa terjadi dikarenakan aliran informasi masih manual tidak menggunakan bantuan sistem.


3. Environment

a. Pemisahan letak bagian jahit dengan area produksi.

Hal ini bisa terjadi dikarenakan keterbatasn ruang area produksi dan juga pengaturan tata letak yang belum efisien.

b. Penundaan pengiriman material.

Hal ini bisa terjadi dikarenakan kondisi ligkungan luar yang tidak kondusif seperti hujan dan lain sebagainya.

Gambar 4.7 Fishbone Diagram Delay

Pada gambar 4.7 di atas merupakan diagram *fishbone* kategori *waste delay*. Gambar tersebut menunjukkan akar penyebab terjadi nya *waste* penundaan proses cetak desain yaitu *man, machine, material* dan *method*.

1. Man

a. Missinformation.

Hal ini bisa terjadi dikarenakan komunikasi antara bagian desain dengan konsumen sulit karena komunikasi antara bagian desain dengan admin kurang optimal.

2. Material

a. Dokumen desain tidak lengkap.

Hal ini bisa terjadi dikarenakan konsumen tidak memberikan elemen desain yang sesuai yang dibutuhkan oleh bagian desain

b. Feedback yang lama dari pihak konsumen.

Hal ini bisa terjadi dikarenakan konsumen belum mengerti apa saja elemen yang harus dikirimkan dan juga keterbatasn pengetahuan mengenai elemen desain tersebut.

3. *Method*

a. Keterlambatan proses selanjutnya.

Hal ini bisa terjadi dikarenakan terlalu banyak revisi desain yang dikarenakan oleh konsumen tidak mengirimkan desain dengan sesuai

4. Machine

a. Keterlambatan penyelesaian desain.

Hal ini bisa terjadi dikarenakan perangkat yang digunakan untuk mendesain ada masalah teknis seperti pembaruan atau gangguan server.

b. Proses desain tidak bisa dilakukan sekaligus.

Hal ini bisa terjadi dikarenakan keterbatasan alat yang kurang dan juga keterbatasn biaya untuk penambahan alat.

4.7 Analisis Efek Kegagalan dan Rekomendasi Perbaikan

Analisis perhitungan kegagalan dan rekomendasi perbaikan guna mengurangi terjadinya kegagalan pada proses produksi CV Rumah Kreasi Yogyakarta. Analisis efek kegagalan dan rekomendasi perbaikan menggunakan *failure mode and effect analysis* (*FMEA*) yang akan diisi oleh manajer, *QC* dan beberapa responden dari pekerja pada proses yang terjadi *waste*. Analisis ini dilakukan dengan cara responden memberi nilai pada tingkat keparahan (*severity*) yang terjadi lalu penilaian tingkat keseringan terjadinya kegagalan dan juga tingkat deteksi dengan skala 1-10 dimana semakin tinggi nilai *FMEA* semakin baik (Septalia *et al.*, 2023).

Tabel 4.17 Hasil Kuesioner FMEA

Kuesioner FMEA (Potential Failure Mode and Effect Analysis)

Waste	Kegagalan	Potential Failure Mode	Potential Effect of Failure	S	Potential Cause/Mechanism Failure	0	Control Design Detection	D	RPN	Rank
		Keterampilan	Pekerja tidak		Pekerja tidak disiplin	4,8	Tidak Ada	10	220,8	2
		pekerja tidak sesuai	melakukan pekerjaan dengan efektif	4,6	Tidak ada kebijakan dan pengawasan serta pemberian sanksi	4,8	Tidak Ada	10	220,8	2
Transportation	Perpindahan Material	Kesalah pahaman informasi	Material yang dibutuhkan tidak sesuai	6,6	Aliran informasi masih manual	5,8	Koordinasi antar bagian	3,8	145,564	3
	Tidak Efisien	k	Jarak perpindahan material jauh dan memakan waktu lama	8	Pemisahan letak proses produksi pada bagian jahit	8,2	Tidak Ada	10	656	1
		Pengiriman material ulang		8,4	Kualitas bahan kain buruk	4	Koordinasi dengan Supplier	3,2	107,52	4

Kuesioner FMEA (Potential Failure Mode and Effect Analysis)

Waste	Kegagalan	Potential Failure Mode	Potential Effect of Failure	S	Potential Cause/Mechanism Failure	0	Control Design Detection	D	RPN	Rank	
		Desain revisi	Desain yang diinginkan tidak sesuai	8,4	Konsumen tidak memberikan elemen desain secara lengkap dan sesuai	4,6	Sosialisasi menggunakan media sosial	3,6	139,104	2	
Delay	Penundaan		Komplain konsumen terhadap keterlambatan	konsumen terhadap		Proses desain memerlukan validasi dari konsumen	4,6	Komunikasi dan konsultasi dengan konsumen	3	107,64	3
	proses cetak desain	Keterlambatan proses selanjutnya			terhadap	terhadap	7,8	Adanya revisi desain dari konsumen	4,8	Konfirmasi desain ke konsumen	2,8
		produk			Komunikasi bagian desain dengan konsumen sulit	5,6	Komunikasi dengan konsumen lewat admin	3,6	157,248	1	

Hasil RPN atau *Risk Priority Number* diperoleh melalui perkalian dari *severity, occurrence* dan *detection*. Pada tabel 4.16 diketahui bahwa nilai tertinggi terdapat pada jenis kegagalan *transportation* dengan nilai sebesar 656 yang berada pada modus kegagalan keterlambatan pengiriman produk. Pada posisi kedua modus kegagalan keterampilan pekerja tidak sesuai dan modus kegagalan kesalahpahaman informasi dengan nilai 220,8 pada jenis kegagalan *delay* juga didapatkan nilai *RPN* tertinggi yaitu 157,248 pada modus kegagalan keterlambatan proses selanjutnya. Nilai RPN tertinggi kedua yaitu pada modus kegagalan desain revisi dengan nilai 139,104.

Dengan hasil di atas, dapat diusulkan rekomendasi perbaikan pada jenis kegagalan *transportation* dan *delay*. Pada *transportation* dapat dilakukan pembuatan kebijakan atau SOP yang jelas agar pekerja lebih teratur dan dapat di deteksi resiko kegagalan tersebut. Pada *transportation* ini diakibatkan oleh jarak yang jauh karena adanya pemisahan letak proses jahit dengan area produksi, sehingga dapat diusulkan untuk melakukan perubahan tata letak atau penambahan area produksi agar bagian proses jahit tidak terpisah dengan area produksi, sehingga meminimalkan jarak perpindahan material.

Pada jenis kegagalan *delay* dapat diusulkan sosialisasi kepada konsumen terhadap ketentuan pengiriman desain lebih diperjelas dengan memberikan contoh aplikasi yang harus digunakan atau bahasa yang mudah dimengerti. Pada jenis kegagalan *delay* juga dapat diusulkan perubahan SOP aliran informasi untuk komunikasi dengan konsumen agar lebih efisien seperti ada nya sistem *live chat* konsumen dengan bagian desain agar lebih efisien waktu. Perawatan rutin terhadap *device* yang digunakan oleh bagian desain juga perlu dilakukan untuk mengurangi ada nya kesalahan teknis dan lain sebagainya.

4.8 Perbaikan Process Activity Mapping

Perbaikan *process activity mapping* dilakukan dengan beberapa usulan seperti pengurangan *cycle time* dengan mereduksi waktu proses *non value added* yaitu *transportation*. Berikut berdasarkan hasil usulan perbaikan *process activity mapping (PAM)*.

Tabel 4.18 Perbaikan PAM

No	Aktivitas	Waktu	Waktu setelah		Ak	tivi		Keterang	
NO	Aktivitas	waktu	perbaikan	О	Т	I	S	D	an
1	Pengukuran	992,5		О					NNVA
2	Pembuatan pola	853,8		О					NNVA
3	Pemotongan kain	1233, 4		О					VA
4	Membuat Desain	2385, 1		О				1	VA
5	Mencetak Desain	299,2						D	VA
6	Proses sablon	13,6		О					VA
7	Pengeringan menggunakan <i>heat gun</i>	5,2	23	0					NNVA
8	Press sablon menggunakan mesing curing	11,4	The Co	0					NNVA
9	Memindahkan hasil sablon ke bagian jahit	468	20		Т				NVA
10	Memindahkan hasil jahit ke bagian packing	470,5	20		Т				NVA
11	Menjahit	944,8		О					VA
12	Memeriksa sablon	21,9	9			I			NNVA
13	Merapihkan sisa benang jahitan	24,3)			I			NNVA
14	Setrika uap kaos	47		О					VA
15	Pengemasan menggunakan plastik bening	13,6		О					VA

Dilakukan perbaikan dengan mereduksi waktu *transportation* dengan *highlight* warna kuning. Pada awalnya waktu proses pemindahan hasil sablon ke bagian jahit sebesar 468 detik dan proses pemindahan hasil jahit ke bagian *packing* sebesar 470 detik, kemudian dilakukan usulan rekomendasi perbaikan yaitu dengan memindahkan bagian jahit yang awalnya terpisah dan memiliki jarak yang jauh dengan area produksi menjadi berdekatan dengan jarak sekitar 10 meter di samping area produksi dengan asumsi rata-rata kecepatan berjalan pekerja 2 detik per meter sehingga waktu proses pemindahan hasil sablon ke bagian jahit dan

waktu proses pemindahan hasil jahit ke bagian *packing* mengalami pengurangan menjadi waktu menjadi 20 detik.

Tabel 4.19 Rekapitulasi hasil perbaikan PAM

Aktivitas	Jumlah	Total Waktu (Detik)	Persentase (%)			
Operation	10	6500,4	83,5			
Transportation	2	40	12,1			
Inspection	2	46,2	0,6			
Storage	0	0	0,0			
Delay	1	299,2	3,8			
Total		6885,8	100			
VA	7	4936,7	63			
NVA	2	40	12			
NNVA	6	1909,1	25			
Total		6885,8 100				
Cycle Time		6845,8				
Lead Time		6885,8				

Pada tabel 4.18 diketahui ada nya penuruan *lead time* yang awalnya sebesar 7784,3 menjadi 6885,8 dengan nilai *process cycle efficiency* yang bernilai tetap yaitu 72%.